ЛАБОРАТОРИЯ КЛЕТОЧНОЙ КОСМЕТИКИ

English (United Kingdom)
estra-X

СПИСОК ПАТЕНТОВ С УПОМИНАНИЕМ ГИАЛУРОНОВОЙ КИСЛОТЫ

  • 95114061 Способ получения гиалурона
  • 2017751 Способ получения гиалурона
  • 2192150 БАД для профилактики йодной недостаточности
  • 2112542 Препарат для лечения патологий соединительных тканей
  • 2225206 Препарат для лечения рака молочной железы
  • 2299733 Лечение опорно-двигательного аппарата
  • 2299732 Способ лечения глаукомы
  • 2299726 Противоинфекционная губная помада
  • 2299725 Косметическое средство для ухода за кожей
  • 2198878 Ароматическое соединение
  • 2198702 Способ подготовки трофических язв к аутодермапластике
  • 2198653 Вагинальные суппозитории
  • 2197946 Композиция для ухода за волосами
  • 2197923 Фармацевтическая композиция для лечения отеков роговицы
  • 2298410 Биотрансплантант и способ лечения ревматических и аутоиммунных заболеваний
  • 2197501 Фотоотверженный гель на основе сшитой гиалуроновой кислоты
  • 2197228 Твердые лекарственные формы
  • 2197222 Водная компазиция для ухода за волосами, лица и тела
  • 2297425 Полипептиды
  • 2297240 Композиция с гиалуроновой кислотой
  • 2297230 Фармацевтическая компазиция с ксантоновой смолой
  • 2196588 Глазные капли
  • 2195955 Применение биологически активных веществ
  • 2195926 Дерматологические композиции
  • 2295954 Микрочастицы для доставки нуклеиновых кислот
  • 2295951 Косметика для ухода за кожей лица и век
  • 2195262 Фармакологическое средство на основе гиалуроновой кислоты
  • 2194512 Способ профилактики и коррекции процесса старения кожи
  • 2194478 Лечение экземы
  • 2294716 Расширяемый стент
  • 2194055 Сшитые сополимеры
  • 2099350 Ассоциаты депротонированной гиалуроновой кислоты
  • 2293557 Средство для лечения кожи и слизистых
  • 2292878 Приготовление микроцастиц, содержащих метопропол
  • 2292746 БАД
  • 2192256 Защита кишечника
  • 2191782 Получение модифицированной гиалуроновой кислоты
  • 2292219 Паратиреоидный гормон человека
  • 2291686 Микроцастицы
  • 2191000 Косметическая маска
  • 2290921 Фармацевтические и косметические средства против старения кожи
  • 2290900 Модифицированный биоматериал для использования в офтальмологии
  • 2290899 Получение биоматерьяла
  • 2290397 Новые инданилиденовые соединения
  • 2290186 Лечение сирингомиелии
  • 2288702 Иррингационный раствор для офтальмологии
  • 2288699 Гель для лечения стоматологических заболеваний
  • 2188011 Активирующая остеогенез фармацевтическая композиция
  • 2187327 Средство с антисептиком
  • 2187325 Средство с радиопротекторным действием
  • 2287330 Композиции миноксидила
  • 2186786 Способ получения гиалуроновой кислоты
  • 2186593 Лечение раненого процесса кожи
  • 2286801 Очищение воды
  • 2286781 Лечение ожогов пищевода у детей
  • 2286764 Средство лечения воспалений полости рта
  • 2185840 Лечение инфекционных заболеваний
  • 2286151 Альфа-2-Дельта-Лиганда
  • 2185149 Ранозаживляющий гель
  • 2285527 Лечение ИЛ-6 заболеваний
  • 2184448 Раствор хранения роговицы, включающий гиалуроновую кислоту
  • 2090179 Крем для кожи
  • 2183961 Способ лечения кожи
  • 2284331 Соли алифотических аминов
  • 2284187 Производные амида
  • 2089191 Снизить внутрение давление
  • 2283320 Получение гликозаминогликанов
  • 2283129 Лечение опухолей
  • 2283098 Косметические средства с Q
  • 2182574 Ароматические соединения
  • 2088257 Средство с гипохолестеролемическим действием
  • 2088218 Состав для гигиенических салфеток
  • 2088206 Способ получения препарата, создающего исскуственный загар
  • 2282462 Противомикробные средства
  • 2182008 Интровагинальная компазиция
  • 2181999 Препарат с отсроченным высвобождением
  • 2181998 Новые композиции липидов
  • 2181995 Лечение болевого синдрома
  • 2181295 Вирионная вакцина
  • 2087144 Витамин Е
  • 2379336 Способ стирки
  • 2379052 Вакцинация
  • 2180855Композиция в виде ионного комплекса
  • 2379025 Противоинфекционный гель
  • 2180825 Лечение травм роговицы
  • 2281082 Способ коррекции эстетических и возрастных проблем кожи
  • 2180576 Биоактивная добавка для косметических средств
  • 2280459 Средство для изменения скорости роста или репродукции клеток
  • 2179981 Соли переходного металла
  • 2378010 Жидкие вакцины
  • 2378008 Комбинированные вакцины
  • 2378007 Анаболическое средство
  • 2377973 Растительные экстракты
  • 2280041 Способ получения водорастворимых комплексов гиалурил
  • 2280038 Биополимеры
  • 2323733 Йодный обмен
  • 2377260 Гель
  • 2178693 Противовирусное средство на основе гиалуроновой кислоты
  • 2178692 Облегчающие зуд косметическое средство
  • 2377022 Гемостатические спреи
  • 2376982 Увлажняющая сыворотка для лица
  • 2376974 Трансдермальный гель для лица
  • 2362784 Гипо-и гиперацетилированные менингокковые капсульные сахариды
  • 2177789 Устройство для доставки лекарства к шейке матки
  • 2277954 Крем для лица омолаживающий
  • 2376378 Способ получения метионина
  • 2177332 Биоматериал для предотвращения послеоперационных спаек, с производной гиалуроновой кислотой
  • 2177310 Способ получения таблеток
  • 2376011 Средство для позвоночника
  • 2277410 Косметическое средство
  • 2323748 Медицинская повязка
  • 2276998 Гидрогелевые композиции
  • 2082416 Способ получения препарата с коллагенном из животного сырья
  • 2375081 Адсорбирующее изделие
  • 2375049 Охлаждающий пластырь
  • 2346049 Способ получения гиалурона
  • 2275913 Фармацевтические средства
  • 2174985 Полисахарид с антиоксидантом
  • 2373957 Носитель для лекарственных средств и биологически активных веществ
  • 2373941 Способ коррекции возрастных и патологических изменений кожных покров
  • 2174845 Композиции и способы доставки генетического материала
  • 2174830 Средство для укрепления волос
  • 2373769 Синбиотическая композиция
  • 2274472 Лечение апорно-двигательного аппарата и болевых синдромов
  • 2372929 Профилактическая композиция на основе веществ фенольной природы в липосомной форме
  • 2173563 Способ нанесения на поверхность предметов покрытия на основе гиалуроновой кислоты, её производных и полусинтетических полимеров
  • 2079304 фармацевтическая композиция, обладающая иммуносупрессорной и антимикробной активностью
  • 2273645 Полипептид ожирения
  • 2173154 Фракция кератансульфатолигосахаридов и содержащий ее фармацевтический препарат
  • 2173136 Грязная мазь
  • 2173128 Способ хирургического лечения центральных разрывов сечатки
  • 2078561 Косметическое средство предотвращающее старение кожи
  • 2172490 Способ прогнозирования воспалительных заболеваний молочной железы при эндопластике
  • 2272645 Способ лечения ЦМВ-Инфекции у детей раннего возроста
  • 2272636 Фармацевтическая композиция для местного лечения воспаления
  • 2272635 Фармацевтически активная субстанция для офтальмологии
  • 2272599 Биоматерьял для стабилизации прогрессирующей миопии "Коллаплант"
  • 2172168 Средство для заживления ран на основе гиалуроновой кислоты
  • 2371172 Фармацевтическая композиция для лечения нервной системы на основе стефаглабрина
  • 2171470 Способ прогнозирования послеоперационной трансформации доброкачественных опухолей нервной системы
  • 2077317 Состав для ванн
  • 2271213 Комбинированные композиции, содержащие экстракты из растений и морских животных
  • 2076872 Способ получения окрашенной гиалуроновой кислоты
  • 2076671 Раствор для защиты роговицы
  • 2370281 Конъюгаты гидроксиалкилкрахмал
  • 2370275 Способ лечения (коррекции) косметических и возрастных дефектов кожи
  • 2370258 Фармацевтическая композиция для парентальной доставки в форме лиофилизата
  • 2270023 Способ экстракции и очистки протеогликана хрящего типа (варианты)
  • 2369408 Гемостатическая композиция, включающая гиалуроновую кислоту
  • 2369387 Фармацевтическая композиция для лечения нервной системы
  • 2369379 Нетаблитированные жевательные формы для индивидуального введения
  • 2169136 Производное коричной кислоты
  • 70792 Медицинский аппликатор
  • 20741717 Способ стабилизации аскорбиновой кислоты
  • 2074712 Способ получения препарата, препятствующего преждевременной эякуляции
  • 2367954 Способ прогнозирования развития кожной патологии у женщин с синдромом склерополикистозных яичников (СПКЯ)
  • 2268075 Устройство для электрокинетической доставки
  • 2268052 Средство для лечения воспалительных и дегенеративных заболеваний суставов
  • 2167649 Способ получения твердой дисперсии умеренного водорастворимого лекарственного вещества
  • 2167647 Гель для бритья
  • 2073520 Лечение урологических инфекций
  • 2367476 Биопластический материал
  • 2367475 Мембрана для использования при направленной регенерации тканей
  • 2367469 Фармацевтическая композиция на основе лизоамидазы
  • 2367456 Фармацевтическая композиция обладающая антибактериальным и некролитическим действием
  • 2367455 Фармацевтическая композиция обладающая некролитическим и антибактериальным действием
  • 2267324 Применение антиадгезивных углеводов, препарат для уменьшения и /или блокирования адгезии патогенных веществ
  • 2166934 Композиции включающие биологический агент
  • 2166510 Псевдодипептиды
  • 2366460 Композиции, имеющие высокую противовирусную и антибактериальную активность
  • 2360901 Производные феноксиуксусной кислоты
  • 2165749 Способ восстановления эндотелия роговицы
  • 2265441 Способ укрепления склеры
  • 2365382 Композиции и способы для регуляции развития сосудов
  • 2070879 Соли гликозаминогликанов
  • 2164914 Циклические и гетероциклические N - замещенные - иминогидроксамовые карбоновые кислоты
  • 2264627 Хламидийный конъюктивит
  • 2364399 Фармацевтический препарат на основе стефаглабрина
  • 2264230 Препарат с замедленным высвобождением активного вещества
  • 2363497 Фармацевтические композиции
  • 2363496 Способ увеличения объема мягких тканей
  • 2363473 Способ антифлогистической активации в эксперементе
  • 2363461 Фармацевтический препарат на основе сигетина
  • 2363459 Средства для введения в роговицу глаз для предотвращения офтальмологических нарушений
  • 2363448 Фармацевтические композиции
  • 2163123 Глазные капли
  • 2162687 Усовершенствованнная лекарственная форма индуктора интерферана
  • 2162343 Биосовместимый полимерный материал и способ его получения
  • 2162327 Лечение рака
  • 2067841 Способ получения ароматизатора
  • 2161478 Способ консервированого лечения гонартроза
  • 2361617 Вольфрамовые частицы в качестве рентгеноконтрастных веществ
  • 2361552 Способы и устройства для дренирования жидкостей и понижения внутриглазного давления
  • 2066996 Способ изготовления пленочного материала для офтальмохирургии
  • 2361417 Корм с глюкозамином и экстрактом ивы для профилактики артроза у животных
  • 2161002 Пищевой общеукрепляющий лечебно-профилактический продукт из хрящевой ткани акул
  • 2360928 Комплексная матрица для медико-биологического применения
  • 2160574 Способ лечения глаукомы
  • 2360688 Способ лечения повреждений переферических нервов
  • 2360670 Фармацевтическая композиция при климактерических расстройствах
  • 2360646 Эндолюминальный протез
  • 2260445 Способ усовершенствования транспортировки через легко прспосабливаемый полупроницаемый барьер
  • 2260007 Производные амида
  • 2359975 Способ получения модифицированных арабиногалактанов
  • 2359974 Антигенные Пептиды
  • 2159775 Псевдопептидный продукт
  • 2259833 Фармацевтическая композиция для лечения роговицы глаза
  • 2259816 Ранозаживляющее средство
  • 2259815 Способ коррекции возрастных изменений, связанных с процессами старения кожи
  • 2359706 Способ сохранения офтальмологических растворов
  • 2359704 Антисептическое средство
  • 2359662 Микрокапсулы
  • 2159253 Катионные полимеры
  • 2159111 Средство для ухода за кожей лица
  • 2159105 Композиция для защиты кожи от опасных химических веществ Получение
  • 2158593 Биосовместимый водный раствор
  • 2358728 Способ лечения и предупреждения потери костной ткани
  • 2258517 Способ хирургического лечения травмотических повреждений селезенки пленкой на основе гиалуроновой кислоты
  • 2357968 Кристалические формы производной имидазола
  • 2357957 Ингибиторы P38 и их применение
  • 2157647 Пищевая добавка и ее получение
  • 2357758 Препараты для чрескожной и чересслизистой добавки
  • 2063244 Способ стабилизации растворов
  • 2063140 Способ получения препарата для консервирования мяса
  • 2157381 Способ получения гиалуроновой кислоты
  • 2257198 Композиции микроцастиц
  • 2356909 Белковый комплекс
  • 2356570 Косметическая композиция
  • 2256434 Способ закрытия перфорации барабанной перепонки
  • 2356520 Способ лечения постконтузионного повреждения сечатки глаза
  • 2156133 Гель
  • 2255945 Полимерная композиция
  • 2355761 Средства повторной дифференцировки
  • 2061043 Способ повышения устойчивости урокиназы к нагреванию
  • 2061005 Способ получения красителей для гистологических исследований
  • 2355420 Зубная паста
  • 2355385 Композиции пролонгированного действия с контролируемым высвобождением
  • 2355240 Способ получения пищевого препарата хондропротекторного действия
  • 2155057 Пихтово репейный бальзам
  • 2354409 Способ производства высвобождающих лекарственные средчтва медицинских устройств
  • 2254145 Раневое покрытие на основе коллаген-хитозанового комплекса
  • 2254133 Лечение и профилактика ВИЧ-инфекции у человека
  • 2253439 Фармацевтическая композиция для защиты и улучшения оптических свойств роговици при проведении эндовитреальных вмешательств
  • 2253437 Способ омоложения кожи
  • 2153352 Фармацевтическая композиция обладающая ранозаживляющим и противовоспалительным действием
  • 2353354 Фармацевтический препарат на основе низкомолекулярного индуктора интерферона
  • 2252787 Способ получения искусственной матрицы кожи
  • 2252767 Способ нормализации иммунобиохимического гомеостаза коров в предродовом и послеродовом периодах
  • 2352583 Фармацевтическая композиция содержащая Fc-область иммуноглобулина в качестве носителя
  • 2152403 Модифицированные полисахариды
  • 2352356 Иммуногенная композиция
  • 2352342 Исскусственный физиологический солевый раствор Способ его получения
  • 2352330 Фармацевтический препарат на основе низкомолекулярного индуктора интерферона
  • 2352323 Фармацевтический препарат с модифицированным высвобождением
  • 2152027 Способ подготовки ткани мозга для определения гликозаминогликанов
  • 2251842 Интектицидный состав для борьбы с личинками оводов
  • 2151580 Способ активации пролиферации эндотелия роговицы
  • 2351648 Дифференцировка стромальных клеток, полученных из жировой ткани, в эндокринные клетки поджелудочной железы и их использование
  • 2351595 N - гидроксиформамидные соединения в качестве ингибиторов металлопротеина
  • 2251411 Косметическое средство в лиофилизированной фармацевтической форме
  • 2251405 Косметика...ее композиции для косметических препаратов
  • 2251367 Средство со сшитой гиалуроновой кислотой для наращивания тканей
  • 2351359 Косметика для профилактики и лечения избыточной массы тела
  • 2351322 Препарат на основе низкомолекулярного индуктора интерферона
  • 2351153 Диета при остеортрите собак
  • 2350958 Способ определения групповой принадлежности синовальной жидкости
  • 2350625 Производные гиалуроновой кислоты с пониженной биодеградируемостью
  • 2150266 Крем после бритья
  • 2350354 Фармацевтическое средство содержащие антагонист и фактор некроза
  • 2350340 Способ коррекции процессов регенерации
  • 2350309 Способ лечения избыточной массы тела с помощью рефлексотерапии
  • 2250047 Профилактический продукт из хрящевой ткани гидробионтов
  • 2249467 Медицинский матерьял и изделия на его основе
  • 2055079 Способ получения препарата гиалуроновой кислоты
  • 2349599 Биоадгезив мидии
  • 2054903 Способ лечения коллагеноза у бычков на откорме
  • 2249210 Способ прогнозирования предрасположенности к развитию и тяжести течения деформирующего остеоартроза коленного сустава у взрослых
  • 2349339 Средство для соединительной ткани
  • 2148988 Человеческий интерферона
  • 2148399 Лечение атеросклероза
  • 2148396 Способ определения активного вещества в дифильных мазевых основах
  • 2148375 Способ диагностики близорукости
  • 2348415 Способ противоспаечной терапии после хирургического вмешательства
  • 2348400 Препарат на основе низкомолекулярного индуктора интерферона
  • 2348386 Способ непроникающего хирургического лечения первичной открытоугольной глаукомы
  • 2248213 Лечение Галактозидальной А недостаточности
  • 2347586 Микрофлюидизированные эмульсии типа "масло в воде" и вакцинные средства
  • 2147243 Контрастное средство
  • 2146526 Лечебный препарат дисбактериоза и урогенитальных инфекций
  • 2146148 Терапевтическое применение фактора роста кератиноцитов (ФРК)
  • 2146139 Способ повышения активности макрофагов и комбинации для его осуществления
  • 2346277 Способ диагностики специфического синовита
  • 2345793 Ультразвуковые контрастные вещества и их получение
  • 2345782 Терапевтические комбинации на основе PORIFERA для лечения и предотвращения кожных заболеваний
  • 2245131 Способ коррекции косметических недостатков кожи
  • 2245130 Способ активации восстановительных процессов в коже
  • 2144833 Хондроитиназа
  • 2344809 Получение твердых дозированных форм с использованием сшитого нетермопластичного носителя
  • 2244540 Косметический гель для ухода за кожей лица
  • 2244536 Способ лечения дегенеративно-дистрофических заболеваний тазобедренного сустава
  • 2344167 Хмелевый экстракт
  • 2143884 Агент регулирования дифференциации клеток кожи, культурная среда для клеток или тканей и способ регулирования дифференциации клеток кожи
  • 2343932 Способ получения обладающих пониженной растворимостью в воде пленночных материалов
  • 2343903 Устройство доставки лекарств для контролируемого введения препаратов
  • 2048817 Способ получения материала для лечения ожогов и гнойно - некронических ран
  • 2048803 Гидратантный крем
  • 2242974 Средства и способы лечения воспалительных заболнваний
  • 2142816 Способ получения антигерпетической вакцины
  • 2342923 Средство для обработки рук с увлажняющим эффектом
  • 2142781 Косметика для макияжа ресниц и бровей и агент ингирирующий рост микроорганизмов в косметических средствах
  • 2242251 Трансплантируемые стенты с биоактивными покрытиями
  • 2142257 Способ обработки глазных имплантантов и контакных линз
  • 2342389 Мононатриевая соль
  • 2342107 Способ устранения западения верхнего века при анофтальме
  • 2141828 Средство, пролонгирующее эффективность чесночного порошка
  • 2241489 Косметическое средство матриксных протеинов для залечивания ран
  • 2241443 Средство для лечения герпеса
  • 2241414 Способ получения протезов кровеносных сосудов
  • 2341539 Гидрогель
  • 2141324 Регулятор скорости воздействия препарата для инъекций
  • 2141312 Косметическое средство для ухода за кожей лица
  • 2341296 Средства и способы покрытия медицинских имплантантов
  • 2341272 Средство для неспецифической иммунотерапии
  • 2341266 Стенты с нанесенным покрытием содержащим N - (5-(4-(4-
  • 2341257 Иммуномодулирующее средство
  • 2341255 Средство для лечения климактерических расстройств
  • 2240821 Способ лечения урологических инфекций
  • 2140786 Способ лечения лишая
  • 2140243 Способ хирургического лечения диабетической ретинопатии и отслоек сечатной оболочки
  • 2240140 Медицинская многослойная повязка и изделия на ее основе
  • 2240135 Культура клеток, содержащая клетки - предшественники остеонегеза, имплантант на ее основе и его использование для восстановления целостности кости
  • 2240123 Экзогенные биологически активные коньюгирующие вещества
  • 2139886 Фотоотвержаемое производное гликозаминогликата, сшитое производное гликозаминогликата и способы их получения, способ предотвращения клеточной и тканевой адгезии
  • 2139729 Вакцина. Способ стимулирования иммунной системы
  • 2339386 Средство обладающее радио - и химиозащитным действием
  • 2339369 Лечение офтальмологических нарушений с использованием мочевины и ее производных
  • 2139041 Гидратантный регенерирующий крем и способ его получения
  • 2139039 Косметический суперкрем для ухода за кожей
  • 2139017 Способ получения боисовместимого материала
  • 2138503 Производные камптотецина, способы их получения, уникальное средство
  • 2338556 Средство содержащие антагонист Р2Х - рецептора и нестероидное противоспалительное лекарственное средство
  • 2338514 Косметическое средство для профилактики старения кожи
  • 2138297 Медицинские устройства, подверженные вызываемому разложению
  • 2138295 Покрытие для ран
  • 2337906 Ингибиторы цитозольной фосфолипазы А2 Применение физиологически допустимого корпускулярного ферримагнитного или ферромагнитного материала. Способ формирования магнитометрического изображения
  • 2137501 Устройство формирования изображения
  • 2137477 Способ лечения заболеваний характеризующихся аутоиммунной агрессией
  • 2137467 Крем для кожи лица и тела
  • 2137449 Способ коррекции дефектов преломления в глазу млекопитающего
  • 2137402 Пищевая Добавка БАД
  • 2336899 Способ стимуляции миелопоэза
  • 2336862 Способ получения раствора для лечения роговицы
  • 2336830 Способ восстановления костных структур челюсти
  • 2136696 Новый полипептид и средство против ВИЧ - Инфекции
  • 2336092 Биоадгезивное средство, по существу свободное от воды
  • 2336089 Средство и способ лечения заболеваний периодонтальных и пульпы
  • 2336074 Средства и способы лечения заднего сегмента глаза
  • 2235548 Ранозаживляющее средство
  • 2135186 Способ лечения рефлекторных синдромов при остеохондрозе
  • 2234945 Стабилизатор водного раствора и водосодержащего сырья
  • 2334762 Растворимая ассоциативная карбоксиметилцеллюлоза
  • 2234514 Макропористые хитозановые гранулы и способ их получения. Способ культивирования клеток
  • 2133615 Средство для лечения неврологических заболеваний
  • 2233164 Способ профилактики развития послеоперационных спаек брюшной полости
  • 2133127 Неткатный материал, способ его получения и способ лечения
  • 2333223 Альдегидные производные сиаловой кислоты и средства на их основе
  • 2333007 Полипептидные вакцины для широкой защиты против рядов поколений менингококов с повышенной вирулентностью
  • 2332985 Дозированные формы анестезирующих средств с длительным высвобождением для обезболивания
  • 2132677 Косметическая маска
  • 38603 Пленочный аппликатор
  • 2232594 Средство содержащие ингибирующие остеокластогенез фактор и полисахарид
  • 2332238 Средство для прокладок, раневых повязок и других изделий, контактирующих с кожей
  • 2331668 Стромальные клетки, получение из жировой ткани, для заживления дефектов роговицы и внутриглазных дефектов и их использование
  • 2331438 Альфа - 2 - Дельта Лигант для лечения симптомов нижних мочевыводящих путей
  • 2331411Электропряденые аморфные фармоцевтические средства
  • 2331367 Способ профилактики образования спаек и их рецидива
  • 2130767 Масло в воде для получения косметических и дерматологических средств, способ косметической обработки
  • 2230752 Поперечносшитые гиалуроновые кислоты и их применение в медицине
  • 2230558 Способ восстановления и сохранения здоровья скмьи
  • 2230550 Средства длительного высвобождения, способ их получения и применения
  • 2230458 Поддержания здоровья суставов
  • 2330290 Способ определения состояния метаболических процессов в ткани суставного хряща
  • 2230073 Способ поперечного сшивания карбоксилированных полисахаридов
  • 2329059 Способ лечения полипозного риносинусита
  • 2329037 Комбинированная терапия для лечения иммуновоспалительных заболеваний
  • 2128666 Гиалуроновая кислота и ее соли, способ очистки гиалуроновой кислоты, способ получения гиалуроновой кислоты. Фармацевтический препарат с гиалуроновой кислотой и средства с гиалуроновой кислотой используемые в офтальмологии
  • 2328740 Способ экспресс - оценки действия зубных паст
  • 2128502 Косметический гель
  • 2328272 Суппозитории индуктора интерферона
  • 2328268 Косметика содержащая амфолитный сополимер
  • 2128057 Композиционная мембрана, способ ее получения и способ направленной регенерации тканей с ее применением
  • 2128055 Средство замедленного освобождения и способ его получения
  • 2128049 Свечи
  • 2227743 Полипептидные варианты с повышенной гепаринсвязывающей способностью
  • 2326893 Ковалентное и нековалентное сшивание гидрофильных полимеров
  • 2326697 Новый перевязочный материал для быстрого заживления раневой поверхности кожи
  • 2126264 Фармацевтическое средство с гиалуроновой кислотой
  • 2326137 Способ получения содержащих альгинат пористых формованных изделий
  • 2325902 Способ выделения гликозаминогликанов из минерализованной соединительной ткани
  • 2225195 Репелленты против насекомых
  • 2325193 Сосудистый стент
  • 2325184 Улучшенные везикулы наружной мембраны бактерий
  • 2325153 Многокомпонентная фармацевтическая дозированная форма
  • 2325152 Удерживаемая в желудке система регулируемой доставки лекарственного средства
  • 2029955 Способ предоперационного определения помутнения задней капсулы хрусталика при экстракции катаракты
  • 2324688 Производные бисбензизоселеназолонила с противоопухолевым, противовоспалительным и антитромбоническим действием
  • 2323017 Устройство и способ контролируемый доставки активных веществ в кожу
  • 2323011 Содержащий Коллаген I и Коллаген II способный к рассасыванию внеклеточный матрикс, предназначенный для реконструирования хряща
  • 2322955 Способ изготовления имплантанта для пластики дефектов хрящевой ткани
  • 2322454 Антитело против CCR5
  • 2322263 Система продолжительного высвобождения растворимого лекарственного средства
  • 2221561 Витамин Е и его сложные эфиры
  • 2321634 Гены участвующие в метаболизме углерода и продуцировании энергии
  • 2321597 Биоматерьял, способ его приготовления и его применение, медицинское средство, имплантант и вкладыш
  • 2121340 Средство для похудения
  • 2220737 Средство для улучшения состояния опорно-двигательного аппарата
  • 2220729 Гель используемый в стоматологии
  • 2320720 Способ культивирования фибропластов для заместительной терапии
  • 2320378 Накожный аппликатор
  • 2320369 Средства, содержащие Альфа - 2 - Дельта Лиганды и ингибиторы обратного захвата серотонина/норадреналина
  • 2320362 Местные фармацевтические средства, содержащие проантоцианидины, для лечения дерматитов
  • 2320322 Биоадгезивная доставка лекарств
  • 2320318 Чувствительное к температуре изменяющие состояние средство гидрогеля
  • 2025120 Способ получения препарата, содержащего Фактор /G-CSF/, стимулирующий рост колоний гранулоцитов
  • 2319490 Средство для введения железа при лечении синдрома беспокойных ног
  • 25995 Содержащее адгезив приспособление для фиксации зубных протезов в полости рта
  • 2218907 Средство для ухода за кожей лица и веками
  • 2318830 Способ получения модифицированного дерматансульфата
  • 2118153 Косметика - туш для ресниц
  • 2217441 Способ получения полимера
  • 2317296 Изетионатная соль селективного ингибитора CDK4
  • 2217171 Мембрана для использования при направленной регенерации тканей
  • 2317095 Экстракты ECHINACEA ANGUSTIFOLIA
  • 2216332 Препарат для лечения астроза
  • 2216314 Крем - маска для обезвоженной кожи
  • 2316333 Средство оздоровительно-восстановительных косметических панто-магниевых ванн
  • 2021304 Способ получения биологически активного средства
  • 2115662 Способ получения гиалуроновой кислоты
  • 2315627 Впрыскиваемые имплантанты на керамической основе для заполнения морщин, кожных впадин, шрамов
  • 2315623 Средство получаемое путем лиофилизации препарата
  • 2114862 Способ получения гиалуроновой кислоты
  • 2314791 Лечебно-Косметическое средство
  • 2314791 Косметический крем-бальзам для ухода за кожей лица и шеи
  • 2214600 Способ оценки эффективности лечения неврологических проявлений
  • 2114602 Способ косметической обработки
  • 2114587 Раствор для защиты роговицы
  • 2214283 Имплантант для подкожного или внутрикожного введения
  • 2313370 Медицинские протезы, имеющие улучшенную биологическую совместимость
  • 2313356 Препарат для лечения демодекоза
  • 2313338 Средство на основе этиллинолеата и триэтилцитрата для лечения себореи и угрей
  • 2313328 Косметика содержащая тонкодисперный и пористый порошок
  • 2212880 Способ получения препарата содержащего антибиотик, с замедленным высвобождением активного вещества
  • 2312640 Способ лечения Блефароконьюнктивальной формы синдрома сухого глаза
  • 2017751 Способ получения гиалуроновой кислоты
  • 2312145 Гены CORYNEBACTERIUM GLUTAMICUM, кодирующие белки, участвующие в синтезе мембран и мембранном транспорте
  • 2311458 Белки вызывающие измененную иммуногенную реакцию. Способ их получения и использования
  • 2311183 Улучшенное разделение с использованием гталуроновой кислоты
  • 2311177 Ингибиторы интегрина для лечения заболевания глаз
  • 2300069 Косметическая маска
  • 2211024 Уход за сухой кожей
  • 2310440 Раствор для защиты роговицы от повреждений
  • 2309684 Лечение межфалангового остеоатроза узелковой формы
  • 2309406 Способ мониторинга фиброза печени у больных хроническим гепатитом с (ХГС)
  • 2209088 Опосредованная рецепторами доставка генов с использованием векторов на основе бактериофагов
  • 2308967 Уменьшение объема ткани
  • 2308962 Средство для опорно-дигательного аппарата
  • 2308957 Способ получения препарата для мезотерапии
  • 2308954 Средство для лечения ран, содержащее плазму или сыворотку крови
  • 2308951 Комплексный способ профилактики вагинальных дисбактериозов
  • 2308937 Косметическая биологически активная добавка и косметический литофитокомплекс на ее основе
  • 2208638 ДНК (варианты), способ получения белка
  • 2207885 Способ подачи небольшого объема лечебного раствора к целевому месту
  • 2207858 Лишенные побочных эффектов производные простагландинов для лечения глаукомы
  • 2207845 Твердая лекарственная форма пролонгированного действия
  • 2207844 Препарат для местного неинвазивного применения
  • 2207841 Средства с антиферментативным действием
  • 2306335 Стволовые клетки и решетки полученные из жировой ткани
  • 2306140 Новые рецепторы для Helicobacter pylori и их применение
  • 2205612 Способ эндотелизации IN VITRO протезов кровеносных сосудов
  • 2105540 Депигментирующее средство
  • 2304960 Косметическое средство для кожи
  • 2304616 Гены участвующие в гомеостазе и адаптации
  • 2204550Способ получения длинноцепочечной N-Ацилированной кислотой Аминокислот
  • 2204415 Способ получения изображения
  • 2204394 Средство для лечения грибковых инфекций, желудочных язв
  • 2204366 Способ хирургического лечения глаукомы
  • 2104034 Вагинальное увлажняющие средство, способ его получения
  • 2303991 Биологически активная добавка
  • 2303990 БАД
  • 2303973 Адсорбирующее изделие
  • 2203676 Средство обладающее иммунокорригирующим действием
  • 2203672 Способ предупреждения беременности
  • 2303635 Гены кодирующие белки резистентности и толерантности к стрессам
  • 2303529 Способ фиксации альгинатного геля на твердой фазе, способ получения клеточного чипа на его основе
  • 2203078 Способ лечения гнойных ран
  • 2302412 Гидразоно-малонитрилы
  • 2102400 Способ получения гиалуроновой кислоты
  • 2202356 Способ стимуляции репаративных процессов длительно незаживающих ран и трофических язв
  • 2202336 Средство для ухода за кожей
  • 2302231 Глазные капли
  • 2102082 Способ магнитометрического исследования тела человека или животного
  • 2301814 Полиакриламидный гидрогель
  • 2201765 Гибридные матричные имплантанты и эксплантанты
  • 2301677 Биотрансплантант для лечения дегенеративных и трвматических заболеваний хрящевой ткани и способ его получения
  • 2301676 Способ лечения ревматизма
  • 2301674 Способ лечения больных с переломами нижней челюсти
  • 2301661 Средство с регулируемым освобождением и способ его получения
  • 2005488 Средство для лечения болезней соединительной ткани
  • 2200001 Крем для кожи

 

РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
Патент №2147243

54) КОНТРАСТНОЕ СРЕДСТВО

(57) Реферат:

Изобретение относится к особым контрастным средствам, особенно к контрастным средствам для МР томографии, имеющим металлооксидное, предпочтительно суперпарамагнитное железооксидное, ядро, при условии низкой плотности покрытия полиэлектролитного и синтетических полимеров, особенно полиаминокислот, а также к способу его получения и применения. Изобретение обеспечивает получение низкотоксичного препарата, который оказывает сниженный или не оказывает эффект на параметры сердечно-сосудистой системы, истощение тромбоцитного звена, активацию комплемента и свертывание крови. 4 с. и 11 з.п.ф-лы, 6 ил., 1 табл. Изобретение направлено на контрастные средства, в частности на частицы контрастного средства в виде оксида металла, покрытого полиэлектролитом, для применения в МР, рентгеновских, ЭИТ и магнитометрических исследованиях, особенно там, где такие частицы оксида металла проявляют суперпарамагнитные свойства. Применение контрастных средств в медицинских диагностических технологиях для улучшения контрастности тканей или для облегчения исследования процессов в организме хорошо устоялось. Вид улучшения контрастности варьирует в зависимости от способа получения изображения, но в магнитно-резонансной томографии большинство традиционных контрастных средств получают свою способность улучшать контрастность от их воздействия на время выбора ткани. Одним из значительных преимуществ МР томографии является высокое качество внутритканевого контрастирования, возникающего в зависимости от времени релаксации ткани. Исходно считалось, что даже без добавления контрастных средств параметры релаксации могут быть использованы для различения нормальной и патологической тканях (смотри, Damadian, Science 171:1151-1153 (1971)). Однако, как только первые МР томограммы были получены Lauterbur (смотри Nature 242: 190-191 (1973)), стало ясно, что дифференцировать аномальную ткань от нормальной наверняка было невозможно. Таким образом, теперь в течение некоторого времени представляется весьма интересным применение материалов, которые улучшают контрастность путем воздействия на ключевые параметры контрастирования. Впервые описала применение МР контрастных средств у животных группа Lauterbur (смотри Lauterbur et al., Frontiers of Biological Energetics, New York, Academic Press 1978, с. 752). Потенциал внутривенно вводимого контрастного средства для диагностики в клинике был показан Carr et al. в 1984 году (смотри Carr et al., AJR 143:215-224 (1984)), а первое МР контрастное средство, GdDTPA, получило одобрение для клинического применения в 1988 году. На сегодняшний день хорошо документально подтверждено, что GdDTPA и сходные вещества, такие как GdDTPA-BMA, GdHPFO3A и GdDOTA, являются безопасными и выгодными для усиленной МР томографии центральной нервной системы. Благодаря своей низкой молекулярной массе и гидрофильным свойствам, данные хелатные соединения металлов распределяются экстрацеллюлярно и быстро выводятся почками. В последнее время были разработаны другие контрастные средства с улучшенными фармакокинетическими свойствами, разрешающими более специфическое распределение по органам и в зависимости от заболевания. Вообще говоря, существуют два подхода, которые могут быть использованы для улучшения доставки МР контрастного средства в область-мишень. В соответствии с традиционным подходом усилия направлены на применение меченых парамагнетиком природных или синтетических молекул или макромолекул со специфичным накоплением или локализацией (например, гепатобилиарные средства, средства, накапливающиеся в кровяном русле, порфирины). Альтернативным подходом является применение более сильных магнитных меток, таких как частицы суперпарамагнетика, которые накапливаются в желаемой области благодаря своей особой природе или посредством их связывания со специфическими молекулами-мишенями. В целом, диагностически выгодные отношения мишень/фон суперпарамагнитных средств значительно выше, чем таковые парамагнитных средств, и, таким образом, суперпарамагнитные средства могут определяться при очень низких тканевых концентрациях (смотри Weissleder et al., Magn. Reson. Quart 8: 55-63 (1992)). Применение суперпарамагнитных средств в качестве МР контрастных средств возникло по причине их идеального сочетания сильного воздействия на интенсивность сигнала ткани, что приводит к мощному усилению контраста и их высокоспецифичного выбора мишени. Существует множество потенциальных мишеней для дисперсных средств в зависимости от пути введения и физикохимических признаков материала частиц, в частности размера частиц и поверхностных характеристик. Их два важнейших применения представляют собой энтеральное введение для исследования желудочно-кишечного тракта или парентеральное введение для исследований части кровяного русла и/или ретикулоэндотелиальной системы и областей ее анатомического распределения, например печени, селезенки, костного мозга и лимфатических узлов. Сверхмалые частицы оксида железа с диаметром менее чем приблизительно 30 нм обладают относительно продолжительным внутрисосудистым временем полужизни по сравнению с более крупными традиционными частицами оксида железа. В дополнение к сокращению T2, обычно связанному с частицами оксида железа, сверхмалые частицы также дают сокращение T1, увеличивая таким образом сигнал внутри сосудов. Последние достижения в области дисперсных средств также сделали возможным мечение рецепторными лигандами или фрагментами антител/антитела. Краткое описание описанных применений различных суперпарамагнитных средств приведено в Fahlvik et al., JMRI 3: 187-194 (1993). До настоящего момента большая часть работы, проводимая в области суперпарамагнитных средств, была сосредоточена на оптимизации их эффективности контрастирования и биокинетики. Публикациям, относящимся к фармацевтическим составам или аспектам безопасности препаратов частиц, уделялось мало внимания. Однако, что касается парентеральных дисперсных препаратов, адекватная эффективность контрастирования и биокинетика не являются сами по себе достаточными и приходится сталкиваться с определенными проблемами. Так, например, для традиционного препарата оксида железа - декстрана, который был опробован в клинических испытаниях, было показано, что он обладает низкой коллоидной стабильностью. Частицы следует редиспергировать и/или разбавлять и отфильтровывать непосредственно перед применением, а препарат вводят медленным вливанием сквозь встроенный фильтр, чтобы избежать тяжелых токсических эффектов. Несмотря на то что частицы могут быть снабжены покрытием для адекватной стабильности и поверхностная область частицы из парентерального дисперсного средства прочна, мы обнаружили, что покрывающие агенты, которые традиционно считались совершенно безопасными, как например полисахариды накопления крахмал и декстран и их производные, могут сами по себе оказывать вредное воздействие на сердечно-сосудистые показатели, истощение тромбоцитарного звена, время свертывания крови и на систему комплемента. Однако заявители обнаружили, что этих проблем можно избежать или уменьшить путем использования меньших, чем традиционные, плотностей покрытия определенных полиэлектролитных покрывающих материалов, таких как синтетические полиаминокислоты, синтетические полимеры и в особенности структурные полисахариды. Таким образом, с одной точки зрения изобретение описывает диагностическое средство, содержащее особый композитный материал, причем частицы, сделанные из него, содержат диагностически эффективный, в значительной мере нерастворимый в воде металлооксидный кристаллический материал и полиионный покрывающий агент, где указанные частицы имеют размеры менее 300 нм, указанный кристаллический материал имеет размер кристалла от 1 до 100 нм, массовое отношение указанного кристаллического материала к указанному покрывающему агенту лежит в интервале от 1000:1 до 11:1, и указанный покрывающий агент выбран из группы, содержащей природные и синтетические структурные полисахариды, синтетические полиаминокислоты, физиологически переносимые синтетические полимеры и их производные. Полисахариды широко распространены в природе и могут быть в целом разбиты на две категории полисахаридов накопления (таких как крахмал, гликоген, декстран и их производные) и структурных полисахаридов, таких как пектины и пектиновые фрагменты, такие как полигалактуроновая кислота, гликозаминогликаны и гепариноиды (например, гепарин, гепаран, кератан, дерматан, хондроитин и гиалуроновая кислота), целлюлозы и полисахариды морского происхождения, такие как альгинаты, каррагинаны и хитозаны и их производные. Настоящее изобретение касается второй категории как природных, так и синтетических форм данных полисахаридов, включая такие полисахариды, которые были фрагментированы или химически модифицированы, например, для получения производных с введенными участками прикрепления для связывания с металлооксидными кристаллами. Особенно предпочтительными в качестве полиионных полисахаридных покрывающих агентов являются природные и синтетические гепариноподобные полисахариды, такие как гепарины, хондроитины (например, хондроитин-4-сульфат) и полисахариды морского происхождения альгинаты, каррагинаны и хитозаны. Менее предпочтительно в качестве покрывающих агентов могут применяться синтетические полиионные полимеры, например полиаминокислоты, полиакрилаты и полистиролсульфонаты (и другие синтетические полимеры, как указано в EP-A-580818). Среди полиаминокислот предпочтительными являются гомо- и сополимеры лизина, глютаминовой кислоты и аспарагиновой кислоты и их эфиров (например, метиловых и этиловых эфиров). Вообще покрывающий агент должен содержать множество ионных групп, например аминовых, карбоксильных, сульфатных, сульфонатных, фосфонатных или фосфатных групп, расположенных вдоль цепи полимера для обеспечения множественных точек прикрепления к поверхности металлооксидного кристалла, так же, как и для обеспечения композитной частицы как единого целого с сетевым электрическим зарядом, предпочтительно отрицательным, который измеряется как дзета-потенциал. Множественное прикрепление гарантирует прочное устойчивое к автоклавированию связывание и устойчивость при хранении, тогда как сетевой заряд способствует улучшению биологической переносимости частицы после введения в сосудистую систему. В общем случае полиионный покрывающий агент будет иметь молекулярную массу в интервале от 500 до 2000000 Да, более особенно от 1000 до 500000, конкретно от 1500 до 250000, более конкретно от 2000 до 150000 Да. Поверхностно-связанный покрывающий агент составляет небольшую часть всей композитной частицы, причем массовое отношение кристаллического материала к покрывающему агенту предпочтительно находится в интервале от 1000:1 до 15:1, особенно от 500: 1 до 20:1, конкретно от 100:1 до 25:1, более конкретно по крайней мере 20:1 в случае гепаринового или хондроитинового покрытий. Производство композитной частицы в общем случае будет осуществляться по одно- или двухстадийной методике покрытия. По одностадийной методике кристаллический материал получают путем осаждения при высоких значениях pH (например, выше 9, предпочтительно выше 11) с помощью основания в присутствии покрывающего агента, тогда как по двухстадийной методике сначала получают кристаллический материал, а затем формируют покрытие. Таким образом, с дальнейшей точки зрения, изобретение описывает способ производства контрастного средства по изобретению, причем указанный способ включает в себя:

(а) при значениях pH выше 9 соосаждение кристаллов диагностически эффективного в значительной мере нерастворимого в воде оксида металла размером от 1 до 100 нм и покрывающего агента или

(б) покрытие кристаллов диагностически эффективного в значительной мере нерастворимого оксида металла покрывающим агентом,

посредством чего получают композитную частицу, имеющую размер менее 300 нм и массовое отношение кристалла к поверхностно-связанному покрывающему агенту от 1000:1 до 11:1, причем указанный покрывающий агент выбран из группы, содержащей природные и синтетические структурные полисахариды и их производные, синтетические полиаминокислоты и физиологически переносимые синтетические полимеры, однако предпочтительно, чтобы покрывающий агент представлял собой структурный полисахарид. Методики соосадительного и послеосадительного формирования покрытия хорошо известны и широко описаны в литературе, как описано ниже (смотри, например, US-A-4795698 и US-A-4452773). Поскольку осаждается не весь покрывающий агент, может оказаться необходимым применять от 1 1/2- до 7-, обычно приблизительно 2-кратный избыток (по отношению к количеству, необходимому, если бы связывалось 100% покрывающего агента), чтобы получить желаемую плотность покрытия. Природа кристаллического материала в композициях по изобретению будет, разумеется, зависеть от ее предназначения. Несмотря на то что в общем случае изобретение применимо ко всем в значительной мере нерастворимым кристаллическим материалам, для которых желательным является парентеральное введение с последующей прицельной специфической доставкой или удлиненным временем пребывания в кровяном русле, однако оно особенно применимо в случае металлооксидных диагностических контрастных средств и, в частности, оксидов металлов, которые проявляют суперпарамагнитные свойства. В данном случае оксид может играть роль диагностического контрастного средства в ЭИТ и магнитометрических исследованиях и особенно в МР томографии. Широкий спектр оксидов металлов, которые проявляют суперпарамагнитные свойства и у которых размер кристалла меньше размера одного домена, хорошо известен и описан, например, в US-A-4827945 (Groman), EP-A-525199 (Meito Sangyo) и EP-A-580878 (BASF). Смешанные ферриты, содержащие более чем один элемент металла, например, как тот, на который ссылается BASF, могут обеспечить особенно эффективные кристаллы с точки зрения релаксации. Данные различные оксиды металлов могут применяться в соответствии с настоящим изобретением, но особенно предпочтительными являются железооксидные суперпарамагнитные кристаллы, например соединения формулы (FeO)nFe2O3, где n находится в интервале от 0 до 1, примером которых служат магнемит (-Fe2O3) и магнетит (Fe3O4) так же, как и их композиты. С применением таких железооксидных кристаллов при их метаболическом усвоении, главным образом, осуществляемом ретикулоэндотелиальной системой, не высвобождается аномального токсического металла, а железо просто вносится в депо железа в организме. Размер кристалла для суперпарамагнитных кристаллов предпочтительно будет находиться в интервале от 2 до 50 нм, особенно от 3 до 35 нм и конкретно от 4 до 20 нм. Частицы композитного средства строения кристалл/покрытия могут содержать единственные кристаллы или по желанию кластеры из множества кристаллов. В этом последнем случае кластерное "ядро" композитной частицы составляет желательно менее чем 100 нм по размеру. Размеры кристалла, кластера и композитной частицы могут быть легко определены с помощью стандартных методов, таких как электронная микроскопия, рассеяние лазерного луча или гидродинамическая хроматография, например, как обсуждается ниже до примеров. Массовое отношение металлооксидного кристалла к покрывающему агенту может быть легко определено с помощью элементного анализа, такого как индуктивный парный плазменный анализ, например сравнение сигналов металла из оксида металла и серы из сульфатных групп прикрепления покрывающего агента (или, аналогично, сигнала других характеристических атомов или групп покрывающего агента, где они не являются сульфатом). Подобным образом отношение может быть определено с помощью гравиметрического анализа. Полиионная природа соединений покрытия позволяет им связываться с поверхностью кристалла во множестве участков на одну молекулу полимера. Это дает возможность образования прочной связи покрытие - кристалл, которая способна выдерживать условия, применяющиеся обычно для автоклавирования диагностических средств (121oC в течение 15 минут), и дает продукт, для которого не существует проблемы низкой коллоидной стабильности, как упоминалось выше, для продуктов декстран : оксид железа. Как следствие своей полиионной природы, покрывающий агент придает композитным частицам суммарный электрический заряд, определяемый как ненулевой дзета-потенциал. При особенно низких плотностях покрытия заряд покрывающего агента может вывести из равновесия заряд металлооксидных кристаллов, и обнаруживается, что в изоэлектрической точке устойчивость частиц низка и может происходить агрегация, что дает агрегаты свыше 1000 нм по размеру. Это является нежелательным, но воздействие уровня покрытия на размер частиц может легко отслеживаться, а возникновение таких агрегатов - избегаться. В общем случае предпочтительными являются дзета-потенциалы, имеющие абсолютные значения по крайней мере 10 мВ (т.е. -10 мВ или +10 мВ), особенно от 20 до 100 мВ и конкретно от 30 до 70 мВ. Таким образом, в предпочтительном осуществлении контрастное средство по данному изобретению содержит железооксидное ядро, которое покрыто и стабилизировано полиионными полисахаридами или полиаминокислотами. Железооксидные частицы с покрытием проявляют хорошую устойчивость, будучи подвергнуты воздействию высоких температур, разбавлению и во времени. По сравнению с традиционными препаратами оксида железа, покрытыми и стабилизированными полисахаридами накопления декстраном (или его производными) и крахмалом, новые средства обладают низкой токсичностью и высокой биологической совместимостью. Для получения препарата оксида железа со специфической химической композицией и строением требуются тщательно контролируемые условия получения. Множество промышленных применений коллоидных суспензий оксида железа (феррожидкостей) было описано для записывающей технологии, в качестве ингредиентов красителей и красок и для электромеханических устройств. Существует большое количество методов синтеза и стабилизации технических чистых оксидов железа, однако они неприменимы для фармацевтических оксидов железа, главным образом, по причине своей неводной природы и/или благодаря токсичности добавляемых покрытий и поверхностно-активных веществ. Наиболее часто применяемый способ синтеза суперпарамагнитных железооксидных контрастных средств происходит из методики, впервые описанной Molday (смотри Molday and Mackinzie, J. Immunol. Meth. 52: 353-367 (1982) и US-A-4452773 (Molday)), для мечения и разделения биологических молекул и клеток. Так называемый Molday-метод, или метод одностадийного соосаждения, основан на осаждении оксидов железа в щелочном растворе, содержащем водорастворимый полисахарид, предпочтительно декстран. Коллоидные отобранные по размеру композитные частицы содержат единственный или множественные железооксидные кристаллы, внедренные в декстран или покрытые декстраном. Кристаллы обычно построены из магнетита или магнетита/магнемита размером 3-30 нм. Общий диаметр частиц, однако, может колебаться от менее чем приблизительно 10 нм до свыше нескольких сотен нм. Как правило, препараты оксида железа, полученные по Molday-методу, являются неоднородными, и в данных препаратах определяется множество фракций частиц, отличающихся по размеру. Таким образом, в целях выделения частиц в пределах более однородного интервала размеров применяли методы центрифугирования, фильтрования или гель-фильтрации (смотри Weissleder et al., Radiology 175: 489-493 (1990)). Традиционные железооксидные частицы с покрытием с общим диаметром в интервале 50-1000 нм экспериментально испытывали в качестве контрастных средств для исследований печени и селезенки. Более мелкие выделенные частицы показали удлиненное время полужизни в кровяном русле и также способность проникать сквозь стенку капилляров. Существует множество потенциальных применений для данных средств, как например для получения изображений лимфатических узлов и костного мозга, для визуализации кровообращения/кровяного русла или для активного нацеливания. Однако было показано, что средства на основе декстрана являются относительно неустойчивыми и давали значительные побочные эффекты. Например, средство, недавно применявшееся в клинических испытаниях, не может быть приготовлено в виде готового к применению продукта. Непосредственно перед введением дозу разбавляют и вводят по типу медленного вливания через встроенный фильтр в целях снижения частоты и тяжести побочных явлений, таких как повышение кровяного давления, боль в нижней части спины и гематологические сдвиги. Заявители обнаружили, что частицы по настоящему изобретению обладают повышенной устойчивостью и пониженной токсичностью по сравнению с традиционными частицами. Данные частицы, применяемые в соответствии с изобретением, могут, например, быть синтезированы по простой двухстадийной методике, где стадия 1 представляет собой осаждение металлооксидных кристаллов из щелочного раствора, а стадия 2 представляет собой процедуру покрытия кристаллов полимером полиэлектролитной природы, либо, альтернативно, они могут быть синтезированы путем соосаждения металлооксидных кристаллов и полиэлектролитного покрывающего полимера. Металлооксидные кристаллы в общем случае могут быть осаждены из водных растворов растворимых солей металла(ов) путем добавления основания. Суперпарамагнитные железооксидные кристаллы могут быть осаждены из водного раствора смеси солей железа путем быстрого добавления щелочи до значений pH выше 10 при энергичном перемешивании или во время облучения ультразвуком. Может применяться широкий спектр солей железа, таких как FeCl2nH2O, FeCl3nH2O, цитрат Fe(III), глюконат Fe(III), FeSO4nH2O, Fe2(SO4)3, оксалат Fe(II), Fe(NO3)3, ацетилацетат Fe(II), сульфат Fe(II) этилендиаммония, фумарат Fe(II), фосфат Fe(III), пирофосфат Fe(III), цитрат аммония Fe(III), сульфат аммония Fe(II), сульфат аммония Fe(III) и оксалат аммония Fe(II). Отношение между двухвалентным и трехвалентным железом должно предпочтительно находиться в интервале от 1:5 до 5:1. Такие осажденные железооксидные кристаллы могут быть представлены следующей формулой: (FeO)xFe2O3, где x может представлять собой число в интервале от 0x1. Магнемит, -Fe2O3, представляет низкое значение x, тогда как магнетит, Fe3O4, представляет высокое значение x. Применяемые основания могут быть выбраны из широкого спектра сильных неорганических или органических оснований, таких как NaOH, NH4OH, LiOH, KOH, триэтиламин и гуанидин. В общем случае противоионы для металла и основания должны представлять собой физиологически переносимые ионы с тем, чтобы свести к минимуму необходимость очистки осажденных кристаллов от потенциально токсичных побочных продуктов. Осаждение оксида железа или, альтернативно, соосаждение оксида железа и полимера может происходить в воде, в смеси воды и органического(их) растворителя(ей) или в вязкой среде. Например, могут применяться такие органические растворители, как метанол, этанол, ацетон, эфиры и гексан. Вязкая основа может содержать гидрогели полисахаридов или полиаминов, трийодзамещенные ароматические соединения, глицерин или полиэтилен- и полипропиленгликоли. Разумеется осаждение из водного раствора, свободного от физиологически непереносимых сорастворителей является предпочтительным, поскольку, опять же, сокращается необходимость в очистке после получения. Покрывающий материал как один из компонентов нового препарата оксида железа обладает полиэлектролитной структурой вследствие преимуществ с точки зрения устойчивости и токсичности. Полиэлектролиты включают полианионные и поликатионные соединения или их смесь, которые прочно связаны с поверхностью оксида железа посредством множества точек прикрепления. Покрывающие материалы могут быть разбиты на группы в зависимости от их заряда и функциональных групп, как например отрицательно заряженные полимеры с функциональными группами, содержащими атомы фосфора или серы или карбоксильные группы, и положительно заряженные полимеры с функциональными группами, содержащими атомы азота. Примерами отрицательно заряженных полимеров являются определенные модификации карбоксицеллюлозы, альгинаты, каррагинаны, полигалактуронат, гепарины и гепариноподобные соединения, такие как хондроитин-4-сульфат, дерматансульфат, кератинсульфат и гиалуронат, синтетические полимеры, такие как полистиролсульфонат, и аминокислоты, такие как полиглютамат и полиаспартат. Примеры положительно заряженных полимеров включают хитозан и полилизин. Как обсуждалось ранее, степень замещенности и плотность заряда полиэлектролитных полимеров не должны быть слишком низкими, когда токсичность и устойчивость частиц становится критической. Таким образом, полимеры должны содержать множественные (более чем одну) функциональные группы, чтобы гарантировать множественные точки прикрепления к металлооксидной поверхности и придать частицам заряженную поверхность. Диаметр суперпарамагнитного железооксидного ядра будет обычно находиться в интервале от приблизительно 4 нм до приблизительно 100 нм. Более мелкие ядра будут содержать только один субдоменный суперпарамагнитный кристалл, тогда как более крупные ядра могут содержать кластер кристаллов. Отдельные ядра кристаллов небольшого диаметра могут быть стабилизированы малыми количествами полимеров низкой или высокой молекулярной массы, тогда как для того, чтобы покрыть и стабилизировать кластеры, требуются большие количества полимеров вследствие их (кластеров - прим. перев.) плотности, а также большей магнитной нагрузки на одну частицу. Суммарный диаметр композитной частицы, включая железооксидное ядро и слой полимерного покрытия, будет обычно лежать в интервале приблизительно от 5 до 300 нм в зависимости от условий получения и молекулярной массы, структуры и количества полимера. Релаксация частиц, содержащих суперпарамагнитный железооксидный кристалл, будет варьировать в зависимости от размера и состава ядра и покрытой частицы. Релаксация T1(r1) может составлять минимум 5 и максимум 200, тогда как релаксация T2(r2) может колебаться от 5 до 500 при 0,5 T (значения релаксации приведены в с-1мМ-1 Fe). Отношение r2/r1 может колебаться от 1 до свыше 100 или предпочтительно от 2 до 10. Небольшие частицы с единственным кристаллом будут иметь значения отношений r2/r1 в более низком интервале, тогда как более крупные частицы и многокристалльные частицы будут показывать более высокие значения отношений. Магнитный момент частиц будет относительно независим от размера частиц и кристаллов до тех пор, пока железооксидные кристаллы проявляют суперпарамагнитные свойства. При 1 T магнитный момент равен приблизительно 20-100 или предпочтительно 30-90 электромагнитных единиц/г оксида железа. С дальнейшей точки зрения изобретение описывает диагностические композиции, содержащие диагностические средства по изобретению совместно по крайней мере с одним физиологически приемлемым носителем или разбавителем, например с водой для инъекций. Композиции по изобретению могут быть представлены в любой удобной фармацевтической форме, например, суспензии, дисперсии, порошка и так далее и могут входить в состав с водными носителями (такими как вода для инъекций) и/или ингредиентами регуляции осмоляльности, pH, вязкости и устойчивости. В идеале композиция находится в форме суспензии, причем суспензия изотонична и изогидрична с кровью. Например, изотоничная суспензия может быть получена путем добавления солей, таких как хлорид натрия, низкомолекулярных сахаров, таких как глюкоза (декстроза), лактоза, мальтоза или маннитол или растворимая фракция полимерного покрывающего агента или их смеси. Изогидричность может быть достигнута путем добавления кислот, таких как соляная кислота, или оснований, таких как гидроксид натрия, если требуется лишь немного сдвинуть pH. Также могут быть применены буферы, такие как фосфатный, цитратный, ацетатный, боратный, тратратный и глюконатный. Химическая устойчивость суспензии частиц может быть модифицирована путем добавления антиоксидантов, таких как аскорбиновая кислота или пиросульфит натрия, и хелатообразователей, таких как лимонная кислота, натриевая соль ЭДТУ и натрийкальциевая соль ЭДТУ. Для улучшения физической устойчивости препарата также могут быть добавлены наполнители. Наиболее часто применяемые наполнители для парентерально вводимых суспензий представляют поверхностно-активные вещества, такие как полисорбаты, лецитин или сложные эфиры сорбита, модификаторы вязкости, такие как глицерин, пропиленгликоль и полиэтиленгликоли (макроголи), или модификаторы критической точки мицеллообразования, предпочтительно неионные поверхностно-активные вещества. Композиции по изобретению будут преимущественно содержать оксид металла в диагностически эффективной концентрации металла, обычно от 0,1 до 250 мг Fe/мл, предпочтительно от 1 до 100 мг Fe/мл и особенно предпочтительно от 5 до 75 мг Fe/мл. Изобретение далее описывает способ получения усиленного контрастом изображения организма человека или другого животного, предпочтительно млекопитающего, причем указанный способ включает в себя введение в указанный организм, предпочтительно парентерально и особенно предпочтительно внутрисосудисто, суспензии контрастного средства по изобретению и получение изображения по крайней мере части указанного организма, в котором распределяется указанное средство, например, по методу МР, ЭТ или магнитометрии. Что касается способа по изобретению, применяемая дозировка будет представлять собой дозировку, обеспечивающую эффективное контрастирование для применяемого способа получения изображения. Обычно она будет лежать в области от 1 до 500 мкмоль Fe/кг, предпочтительно от 2 до 250 мкмоль Fe/кг и особенно предпочтительно от 5 до 50 мкмоль Fe/кг. Могут быть применены дозировки и концентрации, традиционно применяемые в данной области. Известно, что различные препараты оксида железа, полученные по методам данной области, оказывают значительные побочные эффекты, будучи введены внутрисосудисто. Наиболее часто встречающимися изменениями показателей по сообщениям являются снижения системного кровяного давления и острое истощение тромбоцитарного звена. Заявители обнаружили, что данные побочные эффекты представляют собой физиологическую и гематологическую реакции на индуцированную частицами активацию системы комплемента. Тогда как традиционные железооксидные частицы сильно активируют каскад комплемента, композитные частицы по настоящему изобретению не оказывают или оказывают минимальное влияние на количество циркулирующих тромбоцитов, тогда как традиционные препараты вызывают островыраженную и транзиторную тромбоцитопению. Чужеродные поверхности углеводной природы, такие как немодифицированный декстран и определенные модификации декстрана, могут являться мощными активаторами комплемента подобно многим штаммам грамположительных и грамотрицательных бактерий. Поверхности активируют альтернативный путь комплемента, поскольку нуклеофильные поверхностные группы, такие как OH, образуют ковалентную связь с белком комплемента C3b (смотри Immunology (второе издание), Gower Medical Publishing, New York, 1989; 13.3). В условиях сепсиса последствия активации комплемента могут быть полезными, поскольку система комплемента является важной частью реакции организма на повреждение, такое как инвазия инфекционного агента. Однако активация комплемента после инъекции дисперсного контрастного средства является скорее вредной, чем полезной. К удивлению, было показано, что покрытые частицы по настоящему изобретению не воздействуют на систему комплемента или на параметры, связанные с комплементом, такие как кровяное давление и количество тромбоцитов. Подобранный покрывающий материал дает возможность получения поверхности частицы, которая не вызывала бы активации комплемента сходным с традиционными частицами образом. Аналогично, малое количество полиэлектролитных полимеров, применяемых для стабилизации частиц, также имеет супрессирующий эффект на активацию комплемента, возможно вследствие изменений в опсонизации (уровне и типе опсонинов) по сравнению с традиционными частицами. Настоящее изобретение будет теперь описано еще подробнее со ссылкой на следующие неограничивающие примеры. В следующих примерах концентрации железа определяли с помощью плавки железооксидных частиц с последующим анализом методом ICP. pH измеряли, применяя pH-метр Beckman 10, оснащенный pH-электродом Orion Sureflow Ross. Распределение частиц по размеру измеряли методом гидродинамической хроматографии (ГДХ) (смотри Small and Langhorst, Analytical Chem. 54:892A (1982)) или методом рассеяния лазерного луча (PCS), применяя Malvern Zetasizer 4. Поверхностный заряд частицы, выраженный как дзета-потенциал или электрофоретическая подвижность, также определяли с помощью Malvern Zetasizer 4. Релаксацию T1 и T2, r1 и r2, измеряли в водных образцах при 37oC и 0,47 T (Minispec PC-20). Для T1 и последовательности CPMG (TE = 4 мс) для T2 применяли последовательность ИК-импульсов. Кривые магнитного момента получали при температуре окружающей среды на магнитометре с вибрирующими образцами (Molspin), работающем в области магнитных полей от +1 до -1 T. Пример сравнения 1. Декстран (5 г, Sigma), имеющий среднюю молекулярную массу 9000 Да растворяли в воде (10 мл). FeCl36H2O (1,35 г) и FeCl24H2O (0,81 г) растворяли при температуре 60oC в растворе углеводов, после чего смесь медленно вносили в 0,18 М NaOH (100 мл) при 60oC при облучении ультразвуком. Облучение ультразвуком продолжали в течение еще 10 минут с последующим центрифугированием при 4000 об/мин в течение 5 минут. Супернатант отделяли и фракцию подвергали диализу против 0,9% NaCl (5х1 л). Для декстрановых частиц был выявлен большой разброс частиц по размеру, причем присутствовали фракция с размером менее 12 нм и фракция с размером более 300 нм, что было определено с помощью ГДХ. Пример сравнения 2. (В соответствии с примером 7.3 из US-A-5314679). К водному раствору (8,5 мл) FeCl36H2O (1,17 г) и FeCl24H2O (0,53 г) добавляли 1 М карбонат натрия до pH 2,3, а затем добавляли декстран, имеющий среднюю молекулярную массу 9000 Да (5,00 г). Раствор нагревали до 60-70oC и затем охлаждали приблизительно до 40oC. Добавляли 7,5% NaOH до pH около 9,5, прежде чем суспензию нагревали до 95oC в течение 15 мин. Дисперсию подвергали диализу против воды (5х1 л) (отсечка по 15000 Дальтон). Пример сравнения 3. (В соответствии с примером 6.1 из US-A-54770183). К раствору 50 мл 0,28 М FeCl3, 0,16 М FeCl2 и 6,25 г декстрана, имеющего среднюю молекулярную массу 70000 Да (Pharmacia, Uppsala, Sweden) в течение трех минут добавляли 50 мл 7,5% NH4OH. Суспензию перемешивали в течение 5 минут и затем нагревали до 700oC в течение 30 минут. Раствор центрифугировали при 5000 об/мин в течение 15 минут и супернатант подвергали диализу против воды (5х1 л). Пример сравнения 4. Крахмал (3 г, Reppe Glucose, Sweden), имеющий среднюю молекулярную массу 7000 Да, растворяли в воде (10 мл). FeCl36H2O (2,7 г) и FeCl24H2O (4,5 г) растворяли при температуре 60oC в растворе углеводов, после чего смесь медленно вносили в 1,2 М NaOH (50 мл) при 60oC при облучении ультразвуком. Облучение ультразвуком продолжали в течение еще 10 минут с последующим центрифугированием при 5000 об/мин в течение 5 минут. Супернатант отбирали и подвергали диализу против водного раствора 0,9% NaCl. Кривая магнитного момента показала, что крахмальные частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 450 нм, что было определено с помощью PCS. Было определено, что размер кристаллов магнетита составлял около 10 нм. Пример сравнения 5. а) Дисперсию магнетитовых частиц, полученных как в примере 1а (равную 0,3 г магнетитовых частиц), разбавляли водой (50 мл) и к ней добавляли карбоксидекстран со средней молекулярной массой 65000 Да (30 мг, Pharmacia Ab, Uppsala, Sweden), растворенный в воде (30 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для карбоксидекстрановых частиц был показан средний диаметр 88 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -26 мВ. б) Дисперсию магнетитовых частиц, полученных как в примере 1а (равную 0,3 г магнетитовых частиц), разбавляли водой (50 мл) и к ней добавляли карбоксидекстран со средней молекулярной массой 65000 Да (50 мг, Pharmacia Ab, Uppsala, Sweden), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для карбоксидекстрановых частиц был показан средний диаметр 74 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -32 мВ. Значение r1 составляло 35,2 (мMс)-1, а значение r2 составляло 358 (мМс)-1. в) Дисперсию магнетитовых частиц, полученных как в примере 1а (равную 0,3 г магнетитовых частиц), разбавляли водой (50 мл) и к ней добавляли карбоксидекстран с молекулярной массой 3000-4000 Да (15 мг), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали. Пример сравнения 6. а) Дисперсию магнетитовых частиц, полученных как в примере 1а (равную 0,5 г магнетитовых частиц), разбавляли водой (85 мл) и к ней добавляли декстранфосфат со средней молекулярной массой 74000 Да (50 мг, Pharmacia Ab, Uppsala, Sweden), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что декстранфосфатные частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 74 нм, что было определено с помощью PCS. б) Дисперсию магнетитовых частиц, полученных как в примере 1а (равную 0,3 г магнетитовых частиц), разбавляли водой (50 мл) и к ней добавляли декстранфосфат со средней молекулярной массой 71800 Да (50 мг, TdB Consultancy AS, Uppsala, Sweden), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для декстранфосфатных частиц был показан средний диаметр 48 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -51 мВ. Значение r1 составляло 37 (мМс)-1, а значение r2 составляло 342 (мMc)-1. в) Дисперсию магнетитовых частиц, полученных как в примере 1а (равную 0,3 г магнетитовых частиц), разбавляли водой (50 мл) и к ней добавляли декстранфосфат со средней молекулярной массой 71800 Да (15 мг, TdB Consultancy AS, Uppsala, Sweden), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для декстранфосфатных частиц был показан средний диаметр 48 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -36 мВ. Пример сравнения 7. Дисперсию магнетитовых частиц из примера 1а (равную 0,5 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли декстрансульфат со средней молекулярной массой 500000 Да (30 мг, Sigma, D-6001), растворенный в воде. Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что декстрансульфатные частицы проявляли суперпарамагнитные свойства, и для них был показан средний диаметр 42 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -57 мВ. На поверхность частиц адсорбировалось пятьдесят шесть процентов декстрансульфата. Значение r1 составляло 37,7 (мМс)-1, а значение релаксации r2 составляло 307 (мМс)-1. Пример 1. а) Магнетитовые частицы осаждали из водного раствора (500 мл) FeCl24H2O (12,50 г, 6,2910-2 моль) и FeCl36H2O (33,99 г, 1,2610-1 моль) путем быстрого добавления NH4OH (28-30%, 72 мл) до значения pH свыше 10 при энергичном перемешивании. Частицы собирали с помощью магнита и промывали водой до значения pH 6-7. Частицы диспергировали в около 200 мл воды. Реакционную смесь выдерживали в безазотных условиях для декантирования и редиспергирования. Для непокрытых магнетитовых частиц, стабилизированных HCl, был показан гидродинамический диаметр 97 нм. Было измерено, что дзета-потенциал составлял +36 мВ. Значение r1 составляло 27,8 (мМс)-1, а значение r2 составляло 324 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,5 г магнетитовых частиц) разбавляли водой (70 мл) и к ней добавляли гепарин (2 мл, Гепарин 5000 МЕ/мл, Прод. N F1 NA, Nycomed Pharma, Oslo, Noway). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что гепариновые частицы проявляли суперпарамагнитные свойства, и для них был показан

средний диаметр 48 нм, что было определено с помощью ГДХ. Размер магнетитовых кристаллов составлял около 10 нм, что было определено с помощью электронной микроскопии. Было измерено, что дзета-потенциал составлял -61 мВ. На поверхность частиц адсорбировалось пятьдесят четыре процента гепарина, что соответствует 10 мкг серы на мг железа. Значение r1 составляло 40,5 (мМс)-1, а значение r2 составляло 304 (мМс)-1. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,5 г магнетитовых частиц) разбавляли водой (90 мл) и к ней добавляли низкомолекулярный гепарин, молекулярная масса 4000-6000 Да (0,8 мл Fragmin 10000 МЕ/мл, Kabi Pharmacia AB, Sweden). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что гепариновые частицы проявляли суперпарамагнитные свойства. Было измерено, что магнитный момент насыщения составлял 78 электромагнитных единиц/г оксида железа. Размер частиц составлял 85 нм, в что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял - 40 мВ. На поверхности частиц адсорбировалось шестнадцать процентов добавленного полиэлектролита. г) Дисперсию магнетитовых частиц из примера 1а (равную 0,5 г магнетитовых частиц) разбавляли водой (70 мл) и к ней добавляли гепарин (1 мл, Гепарин 5000 МЕ/мл, Прод. N F1 NA, Nycomed Pharma, Oslo, Norway). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что гепариновые частицы проявляли суперпарамагнитные свойства, и для них был показан средний диаметр 64 нм, что было определено с помощью PCS. На поверхность частиц адсорбировалось шестьдесят девять процентов гепарина, что соответствует 7 мкг серы на мг железа. Значение r1 составляло 38 (мМс)-1, а значение r2 составляло 273 (мМс)-1. Пример 2. Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли дерматансульфат (36 мг, Sigma C-241 3), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для дерматансульфатных частиц был показан средний диаметр 49 нм, что было определено с помощью ГДХ. На поверхность частиц адсорбировалось сорок процентов дерматансульфата. Было измерено, что дзета-потенциал составлял -58 мВ. Пример 3. Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли гиалуроновую кислоту (60 мг, Sigma H-401 5), растворенную в воде (6 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что гиалуроновые частицы проявляли суперпарамагнитные свойства, и для них был показан средний диаметр 123 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -55 мВ. Значение r1 составляло 33,7 (мМс)-1, а значение r2 составляло 318 (мМс)-1. Пример 4. Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хондроитин-4-сульфат (60 мг, Sigma C-8529), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хондроитин-4-сульфатные частицы проявляли суперпарамагнитные свойства, и для них был показан средний диаметр 54 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -52 мВ. На поверхность частиц адсорбировалось двадцать девять процентов хондроитин-4-сульфата. Значение r1 составляло 40,4 (мМс)-1, а значение r2 составляло 314 (мМс)-1. Пример 5. Составы оксида железа из примера сравнения 7 (декстрансульфатный оксид железа) и из примеров 1б и г (гепариновый оксид железа) инкубировали с человеческой плазмой in vitro в концентрации, эквивалентной дозировке 1 мг Fe/кг и изучали их эффект на параметр свертывания активированное частичное тромбопластиновое время (АЧТВ) с помощью CephotestTM (Nycomed Pharma AS). Составы гепаринового оксида железа в примерах 1б и г увеличивали АЧТВ в зависимости от дозы гепарина по факторам 4,5 и 2,5 соответственно. Это ясно указывает на желательность минимизации используемой плотности покрытия. Состав в примере сравнения 7 увеличивал АЧТВ по фактору 2,7. Пример 6. Составы оксида железа из примеров 1б и г (гепариновый оксид железа) вводили внутривенно крысам (n= 3) в дозировках 1 мг Fe/кг (только 1б) и 2 мг Fe/кг и отбирали образцы крови до и через 10, 30 и 60 минут после введения. Эффект составов на параметр свертывания активированное частичное тромбопластиновое время (АЧТВ) изучали in vitro с помощью CephotestTM (Nycomed Pharma AS). Составы увеличивали АЧТВ в зависимости от дозы и времени. Через 10 и 30 минут после введения дозировки 2 мг Fe/кг составов из примеров 1б и г увеличивали АЧТВ по факторам 4 и 1,5 соответственно. Дозировка 1 мг Fe/кг состава из примера 1б увеличивала АЧТВ по фактору 1,3 через 10 минут. Пример 7. Дисперсию магнетитовых частиц из примера 1а (равную 0,1 г магнетитовых частиц) разбавляют водой (15 мл) и к ней добавляют гепарансульфат (20 мг, Sigma H-7641), растворенный в воде. Дисперсию облучают ультразвуком и центрифугируют. Супернатант отбирают. Пример 8. Дисперсию магнетитовых частиц из примера 1а (равную 0,1 г магнетитовых частиц) разбавляют водой (15 мл) и к ней добавляют кератансульфат (15 мг, Sigma K-3001), растворенный в воде. Дисперсию облучают ультразвуком и центрифугируют. Супернатант отбирают. Пример 9. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляют водой (50 мл) и к ней добавляют лямбда-каррагинан (30 мг, Sigma C-3889), растворенный в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для лямбда-каррагинановых частиц был показан средний диаметр 53 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -56 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляют водой (50 мл) и к ней добавляют лямбда-каррагинан (50 мг, Sigma C-3889), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для лямбда-каррагинановых частиц был показан средний диаметр 61 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -61 мВ. Значение r1 составляло 38,6 (мМс)-1, а значение r2 составляло 309 (мМс)-1. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляют водой (50 мл) и к ней добавляют лямбда-каррагинан (15 мг, Sigma C-3889), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для лямбда-каррагинановых частиц был показан средний диаметр 52 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -50 мВ. Пример 10. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляют водой (50 мл) и к ней добавляют йота-каррагинан (30 мг, Fluka Prod. 22045), растворенный в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для йота-каррагинановых частиц был показан средний диаметр 63 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -47 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляют водой (50 мл) и к ней добавляют йота-каррагинан (15 мг, Fluka Prod. 22045), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для йота-каррагинановых частиц был показан средний диаметр 54 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -39 мВ. Пример 11. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,5 г магнетитовых частиц) разбавляли водой (80 мл) и к ней добавляли альгинат Protanal LF 10/60, имеющий среднюю молекулярную массу приблизительно 180000 Да (50 мг, Pronova, Drammen, Norwey), растворенный в воде (10 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для альгинатных частиц был показан средний диаметр 57 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -63 мВ. Значение r1 составляло 39,9 (мМс)-1, а значение r2 составляло 305 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,5 г магнетитовых частиц) разбавляли водой (80 мл) и к ней добавляли альгинат Protanal LF 60, имеющий среднюю молекулярную массу приблизительно 325000 Да (25 мг, Pronova, Drammen, Norwey), растворенный в воде (10 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для альгинатных частиц был показан средний диаметр 67 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -58 мВ. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли альгинат Protanal LFR 5/60, имеющий среднюю молекулярную массу приблизительно 380000 Да (15 мг, Pronova, Drammen, Norwey), растворенный в воде (15 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для альгинатных частиц был показан средний диаметр 62 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -53 мВ. Пример 12. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли натрий-карбоксицеллюлозу (30 мг), растворенную в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для карбоксицеллюлозных частиц был показан средний диаметр 56 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -57 мВ. Значение r1 составляло 40,1 (мМс)-1, а значение r2 составляло 303 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли натрий-карбоксицеллюлозу (15 мг), растворенную в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для карбоксицеллюлозных частиц был показан средний диаметр 65 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -53 мВ. Пример 13. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хитозан, имеющий среднюю молекулярную массу приблизительно 2000000 Да (30 мг, Fluka 22743), растворенный в 1%-ной уксусной кислоте (4,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хитозановые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 64 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +48 мВ. Значение r1 составляло 35,1 (мМс)-1, а значение r2 составляло 281 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хитозан, имеющий среднюю молекулярную массу приблизительно 2000000 Да (50 мг, Fluka 22743), растворенный в 1%-ной уксусной кислоте (7,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хитозановые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 64 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +47 мВ. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хитозан, имеющий среднюю молекулярную массу приблизительно 2000000 Да (15 мг, Fluka 22743), растворенный в 1%-ной уксусной кислоте (2,25 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хитозановые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 64 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +47 мВ. Пример 14. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хитозан, имеющий среднюю молекулярную массу приблизительно 750000 Да (50 мг, Fluka 22742), растворенный в 1%-ной уксусной кислоте (7,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хитозановые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 62 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +48 мВ. Значение r1 составляло 33,4 (мМс)-1, а значение r2 составляло 279 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хитозан, имеющий среднюю молекулярную массу приблизительно 750000 Да (50 мг, Fluka 22742), растворенный в 1%-ной уксусной кислоте (2,25 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хитозановые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 64 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +49 мВ. Пример 15. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хитозан, имеющий среднюю молекулярную массу приблизительно 70000 Да (30 мг, Fluka 22741), растворенный в 1%-ной уксусной кислоте (4,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хитозановые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 62 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +49 мВ. Значение r1 составляло 34,3 (мМс)-1, а значение r2 составляло 327 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли хитозан, имеющий среднюю молекулярную массу приблизительно 70000 Да (50 мг, Fluka 22741), растворенный в 1%-ной уксусной кислоте (2,25 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что хитозановые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 64 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +48 мВ. Пример 16. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли(4-стиролсульфонат натрия) (30 мг, Janssen 22.227.14), растворенный в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли(4-стиролсульфоната натрия) был показан средний диаметр 43 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -53 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли(4-стиролсульфонат натрия) (15 мг, Janssen 22.227.14), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли(4-стиролсульфоната натрия) был показан средний диаметр 36 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -49 мВ. Пример 17. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминову кислоту, имеющую молекулярную массу 2000-15000 Да (30 мг, Sigma P-4636), растворенную в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что частицы из поли-L-глютаминовой кислоты проявляли суперпарамагнитные свойства и для них был показан средний диаметр 37 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -68 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминову кислоту, имеющую молекулярную массу 2000-15000 Да (50 мг, Sigma P-4636), растворенную в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-глютаминовой кислоты был показан средний диаметр 37 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -66 мВ. Значение r1 составляло 40,4 (мМс)-1, а значение r2 составляло 281 (мМс)-1. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминовую кислоту, имеющую молекулярную массу 2000-15000 Да (15 мг, Sigma P-4636), растворенную в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-глютаминовой кислоты был показан средний диаметр 38 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -65 мВ. Пример 18. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминовую кислоту, имеющую молекулярную массу 15000-50000 Да (30 мг, Sigma P-4761), растворенную в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-глютаминовой кислоты был показан средний диаметр 37 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -66 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминовую кислоту, имеющую молекулярную массу 15000-50000 Да (50 мг, Sigma P-4761), растворенную в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-глютаминовой кислоты был показан средний диаметр 36 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -66 мВ. Значение r1 составляло 41,7 (мМс)-1, а значение r2 составляло 286 (мМс)-1. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминовую кислоту, имеющую молекулярную массу 15000-50000 Да (15 мг, Sigma P-4761), растворенную в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-глютаминовой кислоты был показан средний диаметр 36 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -63 мВ. Пример 19. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминовую кислоту, имеющую молекулярную массу 50000-100000 Да (30 мг, Sigma P-4886), растворенную в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что частицы из поли-L-глютаминовой кислоты проявляли суперпарамагнитные свойства. Был показан средний диаметр 40 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -70 мВ. Значение r1 составляло 39,6 (мМс)-1, а значение r2 составляло 289 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-глютаминовую кислоту, имеющую молекулярную массу 50000-100000 Да (15 мг, Sigma P-4886), растворенную в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Был показан средний диаметр 39 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -66 мВ. Пример 20. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-аспарагиновую кислоту, имеющую молекулярную массу 15000-50000 Да (30 мг, Sigma P-6762), растворенную в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-аспарагиновой кислоты был показан средний диаметр 42 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -65 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-аспарагиновую кислоту, имеющую молекулярную массу 15000-50000 Да (50 мг, Sigma P-6762), растворенную в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-аспарагиновой кислоты был показан средний диаметр 40 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -67 мВ. Значение r1 составляло 40,8 (мМс)-1, а значение r2 составляло 332 (мМс)-1. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-аспарагиновую кислоту, имеющую молекулярную массу 15000-50000 Да (15 мг, Sigma P-6762), растворенную в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-аспарагиновой кислоты был показан средний диаметр 44 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -66 мВ. Пример 21. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-аспарагиновую кислоту, имеющую молекулярную массу 5000-15000 Да (30 мг, Sigma P-5387), растворенную в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-аспарагиновой кислоты был показан средний диаметр 38 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -67 мВ. Значение r1 составляло 41,1 (мМс)-1, а значение r2 составляло 303 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-аспарагиновую кислоту, имеющую молекулярную массу 5000-15000 Да (50 мг, Sigma P-5387), растворенную в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-аспарагиновой кислоты был показан средний диаметр 37 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -70 мВ. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-аспарагиновую кислоту, имеющую молекулярную массу 5000-15000 Да (15 мг, Sigma P-5387), растворенную в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли-L-аспарагиновой кислоты был показан средний диаметр 37 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -65 мВ. Пример 22. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли полиакриловую кислоту, имеющую молекулярную массу 2000 Да (30 мг, Aldrich 32366-7), растворенную в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для полиакриловых частиц был показан средний диаметр 50 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -36 мВ. Значение r1 составляло 29,1 (мМс)-1, а значение r2 составляло 323 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли полиакриловую кислоту, имеющую молекулярную массу 2000 Да (50 мг, Aldrich 32366-7), растворенную в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для полиакриловых частиц был показан средний диаметр 57 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -29 мВ. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли полиакриловую кислоту, имеющую молекулярную массу 90000 Да (30 мг, Aldrich 19205-8), растворенную в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали. Пример 23. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли полигалактуроновую кислоту, имеющую молекулярную массу 25000-50000 Да (30 мг, Fluka 81325), растворенную в воде (3 мл) с добавленными в нее несколькими каплями 1 М NaOH. Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,45 мкм). Для частиц из полигалактуроновой кислоты был показан средний диаметр 55 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -60 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли полигалактуроновую кислоту, имеющую молекулярную массу 25000-50000 Да (15 мг, Fluka 81325), растворенную в воде (1,5 мл) с добавленными в нее несколькими каплями 1 М NaOH. Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,45 мкм). Для частиц из полигалактуроновой кислоты был показан средний диаметр 61 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -55 мВ. Пример 24. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-лизин, имеющий молекулярную массу 1000-4000 Да (30 мг, Sigma P-0879), растворенный в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,45 мкм). Размер частиц составлял 102 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +47 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-лизин, имеющий молекулярную массу 1000-4000 Да (15 мг, Sigma P-0879), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,45 мкм). Размер частиц составлял 108 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +46 мВ. Пример 25. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-лизин, имеющий молекулярную массу 15000-30000 Да (50 мг, Sigma P-7890), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что поли-L-лизиновые частицы проявляли суперпарамагнитные свойства. Размер частиц составлял 78 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +56 мВ. Значение r1 составляло 38,3 (мМс)-1, а значение r2 составляло 295 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-лизин, имеющий молекулярную массу 15000-30000 Да (15 мг, Sigma P-7890), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Размер частиц составлял 89 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +57 мВ. Пример 26. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-лизин, имеющий молекулярную массу 70000-150000 Да (30 мг, Sigma P-1274), растворенный в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Размер частиц составлял 94 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +57 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-лизин, имеющий молекулярную массу 70000-150000 Да (50 мг, Sigma P-1274), растворенный в воде (5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Размер частиц составлял 86 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +62 мВ. Значение r1 составляло 36,9 (мМс)-1, а значение r2 составляло 294 (мМс)-1. в) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли-L-лизин, имеющий молекулярную массу 70000-150000 Да (15 мг, Sigma P-1274), растворенный в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 4000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Размер частиц составлял 96 нм, что было определено с помощью PCS. Было измерено, что дзета-потенциал составлял +61 мВ. Пример 27. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли(Asp-Na, Glu-Na) 1: 1, имеющие молекулярную массу 5000-15000 Да (30 мг, Sigma P-1408), растворенные в воде (3 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Кривая магнитного момента показала, что частицы из поли(Asp-Na, Glu-Na) проявляли суперпарамагнитные свойства, и для них был показан средний диаметр 38 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -58 мВ. Значение r1 составляло 40,4 (мМс)-1, а значение r2 составляло 277 (мМс)-1. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли(Asp-Na, Glu-Na) 1: 1, имеющие молекулярную массу 5000-15000 Да (15 мг, Sigma P-1408), растворенные в воде (1,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли(Asp-Na, Glu-Na) был показан средний диаметр 40 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял -60 мВ. Пример 28. Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли(Glu, Glu-OEt) 4:1, имеющие молекулярную массу 70000-150000 Да (30 мг, Sigma P-4910), растворенные в этаноле (1,5 мл) с добавленными в него несколькими каплями HCl. Дисперсию облучали ультразвуком, центрифугировали и супернатант отбирали. Пример 29. а) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли(Glu, Lys) 1:4, имеющие молекулярную массу 150000-300000 Да (30 мг, Sigma P-0650), растворенные в воде (5,7 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли(Glu, Lys) был показан средний диаметр 79 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял +65 мВ. б) Дисперсию магнетитовых частиц из примера 1а (равную 0,3 г магнетитовых частиц) разбавляли водой (50 мл) и к ней добавляли поли(Glu, Lys) 1:4, имеющие молекулярную массу 150000-300000 Да (50 мг, Sigma P-0650), растворенные в воде (9,5 мл). Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант фильтровали (фильтр 0,22 мкм). Для частиц из поли(Glu, Lys) был показан средний диаметр 77 нм, что было определено с помощью ГДХ. Было измерено, что дзета-потенциал составлял +63 мВ. Значение r1 составляло 35,5 (мМс)-1, а значение r2 составляло 255 (мМс)-1. Пример 30. Дисперсию магнетитовых частиц, полученных как в примере 1а (равную 0,3 г магнетитовых частиц), разбавляли водой (50 мл) и к ней добавляли дендример (полученный в соответствии с US-A-4507466 (The Dow Chemical Corporation)) (30 мг) в воде. Дисперсию облучали ультразвуком, центрифугировали при 5000 об/мин в течение 13 минут и супернатант отбирали. Устойчивость. Пример 31. Устойчивость следующих железооксидных составов исследовали путем автоклавирования при 121oC в течение 15 минут: примеры сравнения 5б и 6б, примеры 1а, 1б, 2, 3, 4, 9а, 10а, 11а, б и в, 12а, 13а, б и в, 14б, 15а, 16а, 17а и б, 18б, 19а, 20а, 21б, 22а, 23а, 25а, 26а, 27б и 29а. Непокрытые железооксидные частицы из примера 1а диспергировали до эксперимента, применяя HCl. Для других составов модификаций не делали. Составы изучали непосредственно до и после автоклавирования, так же как и одним днем и одной неделей позже. Было показано, что образец из примера 1а полностью разделялся после автоклавирования. На другие составы крайнее нагревание не влияло, и для них было показано однородное распределение по размеру до и во всех моментах времени после автоклавирования. Пример 32. Была изучена адсорбция одного типичного примера полиэлектролитных полимеров по данному изобретению, поли(4-сиролсульфоната натрия) (ПССNa). Проводились измерения изотермы адсорбции, равно как и электрофоретической подвижности и размера частиц как функции сокращения полимера. Непокрытые железооксидные частицы из примера 1а покрывали ПССNa, как описано в примере 16, однако дисперсии не облучали ультразвуком. Применяли такие количества ПССNa, котоыре давали отношение полимера к оксиду железа 910-3 к 2,5. На фиг. 1 показана изотерма адсорбции ПССNa на кристаллы оксида железа. Непокрытые железооксидные частицы имели размер 1305 нм, что определялось с помощью PCS. Приняв плотность частицы 5,2 г/л, можно установить площадь поверхности частиц как

площадь поверхности (м2/мл) = mA/V,

где m представляет собой массу частиц на мл, представляет собой плотность частиц, а A и V представляют собой площадь и объем отдельной частицы соответственно. Установленная площадь поверхности в суспензии была вычислена как 9,510-3 м2/мл. Максимальное адсорбированное количество тогда представляет 26 мг/м2, указывая на наращивание множественных слоев адсорбированного полимера или цепи/петли полимера, тянущейся с поверхности. На фиг. 2 и 3 показаны электрофоретическая подвижность (E) частиц и их гидродинамический диаметр как функция концентрации полимера. Электрофоретическая подвижность была рассчитана как 4,2 0,6 мкмсм/VS для непокрытой железооксидной частицы и быстро падала с увеличением концентрации полимера. При высокой концентрации полимера электрофоретическая подвижность выравнивается вблизи -4 мкмсм/VS, и создается впечатление, что размер частиц стабилизируется на 230 20 нм, что определяется с помощью PCS. Результаты на фиг. 1-3 схематично объяснены в таблице. Результаты измерений электрофоретической подвижности непокрытого, равно как и покрытого ПССNa, оксида железа в зависимости от pH суспензии показаны на фиг. 4. Непокрытая поверхность оксида железа проявляет типично амфотерную природу, меняющуюся от высоких положительных значений электрофоретической подвижности при низких значениях pH до возрастающих отрицательных значений при более высоких значениях pH. Изоэлектрическая точка расположена вблизи pH 7. Характеристики поверхности частицы полностью меняются, отражая стойкую кислую природу после покрытия ПССNa. Данная поверхность проявляет высокие отрицательные электрофоретические подвижности даже при низких значениях pH, несколько изменяясь до отчасти более отрицательной поверхности при высоких значениях pH. Результаты на фиг. 4 согласуются с фиг. 1-3, что делает очевидным полное покрытие исходной поверхности оксида молекулами кислого полимера при данной концентрации полимера. Фиг. 1. Адсорбция ПССNa на коллоидный оксид железа. Адсорбированное количество (мг/мл) от концентрации ПССNa (мг/мл). представляют фракционирование путем центрифугирования, а представляет фракционирование путем фильтрования. Фиг. 2. Электрофоретическая подвижность коллоидного оксида железа от концентрации ПССNa (мг/мл). Фиг. 3. Размер частиц (нм) коллоидного оксида железа от концентрации ПССNa (мг/мл). Фиг. 4. Электрофоретическая подвижность (мкмсм/Vs) чистого коллоидного оксида железа (x) и коллоидного оксида железа, покрытого ПССNA (x) от pH. Пример 33. Изучалась адсорбция типичного полиэлектролитного полимера гепарина на поверхность оксида железа. Электрофоретическую подвижность и размер железооксидных частиц измеряли как функцию концентрации гепарина. Непокрытые частицы из примера 1а, стабилизированные HCl, покрывали гепарином, как описано в примере 1б, однако дисперсии подвергали вихревому перемешиванию вместо облучения ультразвуком. На фиг. 5 и 6 показаны электрофоретическая подвижность и размер частиц от концентрации гепарина. Профили электрофоретической подвижности и размера частиц от количества гепарина показывают адсорбцию полимера на поверхность частиц. Повышение количеств отрицательно заряженных молекул на положительной поверхности оксида железа сначала снижает, а затем обращает электрофоретическую подвижность. Суспензия дестабилизируется вблизи изоэлектрической точки. Фиг. 5. Электрофоретическая подвижность (мкмсм/Vs) от концентрации добавленного гепарина (мкл/мл). Фиг. 6. Размер частиц (мкм) от концентрации добавленного гепарина (мкл/мл). Безопасность. Пример 34. Составы оксида железа из примера сравнения 4 (крахмальный оксид железа) и примера 1б (гепариновый оксид железа) вводились кроликам (n=4-5) в виде внутривенных быстрых инъекций болюса. Вводились дозы по 1, 2, 5 и 10 мг Fe/кг и до 60 минут после введения записывались среднее системное артериальное давление (САД) и среднее давление в легочной артерии (ДЛА). Для состава из примера сравнения 4 был показан зависимый от дозы эффект на ДЛА. В случае дозы 1 мг Fe/кг изменений зарегистрировано не было, тогда как небольшое увеличение с 20 1 мм рт.ст. до 23 1 мм рт.ст. было записано в случае дозы 2,5 мг Fe/кг. Доза 10 мг Fe/кг повышала среднее ДЛА с 22 3 мм рт. ст. до 33 6 мм рт.ст. Наивысшая доза также давала умеренное снижение САД с 129 10 мм рт.ст. до 117 8 мм рт.ст. Максимальные эффекты на ДЛА и САД были зарегистрированы через 3-4 минуты после инъекции, а реакции были кратковременны (до 10 минут). Состав из примера 1б не влиял на записываемые гемодинамические параметры. Пример 35. Составы оксида железа из примеров сравнения 1 (декстрановый оксид железа), 4 (крахмальный оксид железа), 5б (карбоксидекстрановый оксид железа) и 6б (декстранфосфатный оксид железа) и примеров 1б (гепариновый оксид железа), 4 (хондроитин-4-сульфатный оксид железа) и 25а (поли-L-лизиновый оксид железа) вводили внутривенно крысам (n=2-3) в дозировке 1 мг Fe/кг. Через 3, 5, 10 и 15 минут после введения записывалось количество циркулирующих тромбоцитов. Составы из примеров сравнения 1 и 4 вызывали через 3 и 5 минут после введения выраженное снижение количества тромбоцитов до 10-17% от значений до введения. Состав из примеров сравнения 5б и 6б также давал значительное снижение, примерно до 50-60% от контроля, через 3 и 5 минут. Реакция быстро компенсировалась у всех крыс и в течение 15 минут вновь достигались количества тромбоцитов, равные 75-100% от контрольных значений. Составы из примеров 1б, 4 и 25а не имели или имели минимальный эффект на количество циркулирующих тромбоцитов. Пример 36. Составы из примеров сравнения 1 (декстрановый оксид железа), 4 (крахмальный оксид железа), 5б (карбоксидекстрановый оксид железа) и 6б (декстранфосфатный оксид железа) и примеров 1б, 3а (гепариновый оксид железа), 4 (хондроитин-4-сульфатный оксид железа) 11а (альгинатный оксид железа), 13а (хитозановый оксид железа), 17а (поли-L-глютаматный оксид железа) и 25а (поли-L-лизиновый оксид железа) инкубировали с человеческой сывороткой in vitro в концентрациях, эквивалентных дозировкам 1 мг Fe/кг (все вещества) и 10 мг Fe/кг (примеры сравнения 4 и 5б), в течение 60 минут при 37oC. Все составы были стерилизованы путем автоклавирования и свободны от эндотоксинов. Ферментный иммуноанализ для определения человеческого комплекса комплемента SC5b-a (TCC) (Bering) применяли в целях исследования активации комплемента. В качестве положительного контроля применяли Зимозан А (Sigma), а в качестве отрицательных контролей применяли декстрозу (5%) ил воду. Все составы из примеров сравнения значительно повысили уровни TCC. Эффект был особенно выражен в случае образца из примера сравнения 5б, который дал 6-кратное увеличение в TCC, даже при более низкой дозировке 1 мг Fe/кг, по сравнению с отрицательным контролем. Зависимый от дозы эффект на TCC наблюдался в случае составов из примеров сравнения 1 и 4. Низкие дозировки давали 2-кратное, а высокие дозировки - 6-кратное увеличение измеряемых уровней TCC. Состав из примера сравнения 6б увеличивал TCC в 3 раза при низкой дозировке 1 мг Fe/кг. Другие исследованные составы не имели или имели лишь минимальные эффекты на TCC по сравнению с отрицательным контролем.


Формула изобретения

1. Диагностическое средство, содержащее композитный материал в виде частиц, причем частицы содержат диагностически эффективный, в значительной мере нерастворимый в воде металлооксидный кристаллический материал и полиионный покрывающий агент, где указанные частицы имеют размеры менее 300 нм, указанный кристаллический материал имеет размер кристалла 1 - 100 нм, отличающееся тем, что массовое отношение указанного кристаллического материала к указанному покрывающему агенту лежит в интервале от 1000 : 1 до 11 : 1, и указанный покрывающий агент выбран из группы, состоящей из природных и синтетических структурных полисахаридов, синтетических полиаминокислот, физиологически переносимых синтетических полимеров и их производных. 2. Диагностическое средство по п.1, отличающееся тем, что указанный покрывающий агент представляет собой природные или синтетические структурные полисахариды, выбранные из пектинов, полигалактуроновой кислоты, гликозаминогликанов, гепариноидов, целлюлоз и полисахаридов морского происхождения. 3. Диагностическое средство по п.2, отличающееся тем, что указанный покрывающий агент выбран из дерматанов, гепаринов, гепаранов, кератанов, гиалуроновой кислоты, каррагинанов и хитозанов. 4. Диагностическое средство по п.2, отличающееся тем, что указанный покрывающий агент представляет собой хондроитин. 5. Диагностическое средство по п.1, отличающееся тем, что указанный покрывающий агент представляет собой гомо- или сополимер аспарагиновой кислоты, глютаминовой кислоты или лизина. 6. Диагностическое средство по любому из пп.1 - 5, отличающееся тем, что указанный покрывающий агент имеет молекулярную массу 500 - 2000000 Да. 7. Диагностическое средство по любому из пп.1 - 6, отличающееся тем, что массовое отношение указанных металлоксидных кристаллов к поверхностно связанному покрывающему агенту составляет, по меньшей мере, 15 : 1. 8. Диагностическое средство по любому из пп.1 - 6, отличающееся тем, что массовое отношение указанных металлоксидных кристаллов к поверхностно связанному покрывающему агенту находится в интервале от 500 : 1 до 20 : 1. 9. Диагностическое средство по любому из пп.1 - 6, отличающееся тем, что массовое отношение указанных металлоксидных кристаллов к поверхностно связанному покрывающему агенту находится в интервале от 100 : 1 до 25 : 1. 10. Диагностическое средство по любому из пп.1 - 9, отличающееся тем, что указанные металлоксидные кристаллы проявляют суперпарамагнитные свойства. 11. Диагностическое средство по п.10, отличающееся тем, что указанные кристаллы, проявляющие суперпарамагнитные свойства, представляют собой железооксидные кристаллы. 12. Диагностическое средство по любому из пп.1 - 11, отличающееся тем, что указанные частицы обладают дзетапотенциалом, который составляет менее чем - 10 мВ, или более, чем +10 мВ. 13. Диагностическая композиция, содержащая диагностическое средство по любому из пп.1 - 12 и, по меньшей мере, один физиологически переносимый носитель или наполнитель. 14. Способ получения диагностического средства по п.1, включающий соосаждение при значениях рН выше 9 кристаллов диагностически эффективного по существу нерастворимого в воде оксида металла, имеющих размеры 1 - 100 нм, и покрывающего агента, например, покрытие указанных кристаллов указанным покрывающим агентом, посредством чего можно получить композитную частицу, имеющую размер менее 300 нм и массовое отношение кристалла к поверхностно связанному покрывающему агенту в интервале от 1000 : 1 до 11 : 1, причем указанный покрывающий агент выбран из группы, состоящей из природных и синтетических структурных полисахаридов и их производных, синтетических полиаминокислот, физиологически переносимых синтетических полимеров. 15. Способ получения контрастно усиленного изображения организма человека или других животных, включающий парэнтеральное введение в указанный организм суспензии контрастного средства по любому из пп.1 - 13 с получением изображения, по меньшей мере, части указанного организма, в котором распределено указанное средство, причем указанное средство вводят при дозе 1 - 500 мкмол Fe/кг.

 
Copyright© 2006-2010 Cell Cosmetics Laboratories Ltd. Все материалы оригинальные. Перепечатка возможна со ссылкой на http://www.placenta-lab.ru